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Abstract 

Fermentable sugar for bioethanol production can be produced from molasses due to its high sucrose 

content but Ca2+ ions found in the molasses may affect the hydrolysis. Therefore, this paper was fo-

cused to study the effect of Ca2+ ions as CaO on sucrose hydrolysis using invertase and to obtain the ki-

netic parameters. The kinetic parameters (KM and Vmax) were obtained using a Lineweaver-Burk plot. 

The value of KM and Vmax parameters were 36.181 g/L and 21.322 g/L.h, respectively. The Ca2+ ions act 

as competitive inhibitor in sucrose hydrolysis using invertase. Therefore, the inhibition mechanism 

was followed the competitive inhibition mechanism. The value of inhibition constant was 0.833 g/g. 

These parameters were obtained from the non-substrate inhibition process because this study used the 

low substrate concentrations which means the fermentable sugar production was low. Hence, there 

were still more challenges to studying the simultaneous effect of substrate and Ca2+ on sucrose hydrol-

ysis to produce high fermentable sugar. Copyright © 2019 BCREC Group. All rights reserved 
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1. Introduction 

One of the by-products of the sugar refinery 

process which is the most economical source of 

carbohydrate for ethanol and citric acid fermen-

tation is molasses [1]. Molasses can be convert-

ed into fermentable sugar through the enzymat-

ic hydrolysis due to its high reduced polymeric 

sugars content. Usually, molasses has a water 

content of 17-25% and high sugar content 

(sucrose 30-40%, glucose 5-9%, and fructose 5-

12%) [1,2]. Some minerals are also found in the 

molasses such as potassium 1.5-6% and calcium 

0.3-0.9% [3]. The appearance of calcium (Ca2+) 

in molasses is a consequence of the clarification 
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process. In the sugar refinery process, the sug-

arcane juice is acidic. For the clarification pro-

cess reason, the sugarcane was mixed with milk 

of lime (MOL) as CaO, so that the pH of sugar-

cane juice changes to a range of 8.9 to 9. Besides 

the clarification process, the sulphitation pro-

cess also occurs as a part of the sugar refinery 

process. The sulphitation process was done to 

maintain the pH of the process considered as 

one of the main reasons for the whitening of the 

sugar crystals. In the sulphitation process, SO2 

is added to the sugarcane juice so that the pH 

value becomes 7.4 to 7.5 [4]. 

As has been mentioned before, calcium was 

found in the final molasses. It mixed in the mo-

lasses which could interfere with the products 

produced in the next process, for example, the 

fermentation process for ethanol production. 
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Ethanol production would decrease during the 

sucrose fermentation in the presence of calci-

um, possibly caused by the inhibition process 

on invertase by calcium [5]. Takeshige and Ou-

chi [6] reported that ethanol productivity was 

affected by yeasts, which were strain depend-

ent. When the process used molasses contain-

ing metal ions such as copper, potassium, and 

calcium, the yeast strain with low ethanol 

showed a lower invertase activity which indi-

cated an inhibition effect on invertase activity 

[6]. In this case, calcium in molasses influenced 

the invertase activity. 

Several studies have investigated the enzy-

matic hydrolysis of sucrose using different en-

zyme and with or without the presence of metal 

ions which thought to affect the hydrolysis pro-

cess. Ettalibi and Barati [7] investigated the 

sucrose hydrolysis using the thermostable       

inulinase. The enzyme activity depended on su-

crose concentration. At high sucrose concentra-

tion, sucrose could inhibit the process. Onishi et 

al. [8] reported the influence of enzymatic pre-

hydrolysis of sugarcane molasses with α-

amylase and amyloglucosidase treated with the 

amylolytic enzymes and then submitted to alco-

holic fermentation for 8 h at 32 °C, in the pres-

ence of baker’s yeast (Saccharomyces cere-

visiae) and nutrients. The best result for the 

treatment of molasses with the two enzymes 

yielded a 10.2% increase of sugars in compari-

son to molasses without pre-treatment [8]. 

Bhalla et al. [9] investigated the sucrose hy-

drolysis using invertase enzyme from Saccha-

romyces cerevisiae. They explained that the op-

timum temperature and pH for invertase acivi-

ty were 40 ºC and 6.0. The KM parameter value 

was 11 mM. It can be concluded that the in-

vertase potentially to be used for sucrose hy-

drolysis due to the lower KM value. 

The effect of metal ion on sucrose hydrolysis 

was investigated by several authors [10–15]. 

Bagal-Kestwal et al. [10] studied the effect of 

several metal ions such as Hg2+, Pb2+, Ag+ and 

Cd2+ on sucrose hydrolysis. Those metals ions 

acted as the inhibitor and classified as competi-

tive inhibitors. Essel and Ossei [11] also inves-

tigated the effect of Ag+ ions as silver nitrate on 

sucrose hydrolysis and concluded that the Ag+ 

acted as an inhibitor on sucrose hydrolysis. 

Plascencia-Espinosa et al. [12] investigated the 

effect of several metal ions, such as: Cu2+, Zn2+, 

Hg2+, Mn2+, and Co2+, on sucrose hydrolysis. 

Some metal ions (Cu2+, Zn2+, and Hg2+) acted as 

the inhibitors, but interestingly, the presence of 

Mn2+ and Co2+ could increase the enzyme activ-

ity. de Gine´s et al. [13] has investigated that 

bivalent metal ions such as Ca2+, Cu2+, Cd2+, 

and Hg2+ significantly inhibited the activity of 

invertase. Kaur and Sharma [14] investigated 

that all metal ions were well tolerated and did 

not adversely affect  the activity of invertase 

except Na+, Hg2+, and Ca2+. It means that the 

Na+, Hg2+, and Ca2+ was adversely affect in-

vertase activity and could inhibit the invertase. 

Maruyama and Onodera [15] also investigated 

that invertase activity would decrease in the 

presence of Ca2+, Zn2+, and Cu2+. 

Studies on sucrose hydrolysis using invert-

ase have not been widely conducted. Therefore, 

this research was conducted to investigate hy-

drolysis sucrose with and without added CaO. 

It has been clarified that Ca2+ ions on sucrose 

hydrolysis have the stronger effect than K+ 

ions [16] but the inhibition type of Ca2+ on in-

vertase is still not clear. Due to this reason, 

this study aims to investigate the effect of Ca2+ 

ions as CaO during of hydrolysis of sucrose us-

ing invertase and to obtain the kinetic parame-

ters. The kinetic parameters (KM and Vmax) ob-

tained from this study is supposed to be used 

for the scale-up of the hydrolysis process into a 

pilot plant or even the commercial scale. 

 
2. Materials and Method 

2.1 Materials 

The enzyme used in this study was 

invertase (EC.3.2.1.26) from Saccharomyces 

cerevisiae (purchased from BIO­CONR) and its 

activity was determined by measurement the 

liberated reducing sugar (fructose and glucose) 

produced from sucrose [17]. The other chemi-

cals were sucrose (99.5%, Sigma-Aldrich), sul-

furic acid (98.5%, Merck), 3,5-Dinitrosalicylic 

acid (98%, Merck), potassium sodium tartrate 

tetrahydrate (99%, Merck), sodium acetate 

buffer (pH 5.2±0.1, Merck), sodium sulfite 

(98.5%, Merck), glucose (99.5%), and sodium 

hydroxide (98%, Merck). 

 
2.2 Batch Hydrolysis Enzymatic of Sucrose 

Sucrose solution (pH 7) with concentrations 

of 10-80 g/L was used in the present study. The 

pH of the solution was adjusted to 5 using 0.1 

M of sodium acetate as a buffer. Then, the in-

vertase was added to the sucrose solution with 

a concentration of 1% (w/w). A thermostatic 

water bath heater was used to maintain the 

temperature of the mixture so that the temper-

ature can be adjusted at 50±1 ºC. During the 

incubation for 5 h, the mixture was continuous-

ly stirred at 100 rpm. In order to determine the 

reducing sugar concentration, initial velocity, 

and kinetic parameters, the samples were 
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collected at 1 h interval. In order to study the 

effect of Ca2+ ions inhibition, Ca2+ ions as CaO 

was added to the mixture with various concen-

trations of 0.25, 0.5, 0.75, 1, and 1.25% (w/w).  

 
2.3 Analytical Methods for Reducing Sugar De-

termination 

Dinitrosalycilic acid (DNS) method as de-

scribed by Miller was used to measure the re-

ducing sugar produced [18]. An aqueous solu-

tion containing 1 %wt of DNS, 20 %wt of potas-

sium sodium tartrate tetrahydrate, 1 %wt of so-

dium hydroxide, and 0.05 %wt of sodium sulfite 

was added to the samples in the mass ratio of 

3:1. During the incubation in a boiling water 

bath for 8 min, the solution was shaken. After 

that, it was cooled in an iced water bath for 5 

min then its absorbance was measured at 540 

nm using a UV/visible spectrophotometer (UV-

160A, SHIMADZU, Kyoto, Japan). The total re-

ducing sugars produced was determined using 

the procedure described by Somogyi [19] and 

Nelson [20] methods in which fructose (0 to 10 

g/L) was used as the standard solution. 

 

2.4 Determination of Kinetic Parameters 

The enzymatic reaction mechanism follow 

the Michaelis-Menten mechanism [21]. First, 

the enzyme combined reversibly with the sub-

strate to form an enzyme-substrate complex in 

a relatively fast reversible step. Then, the en-

zyme-substrate complex broken down in a slow-

er step to yield the free enzyme and the reac-

tion product. 

 

E + S ↔ ES → E + P 

 

The general structure of Michaelis-Menten 

equation to determine the reaction velocity is 

presented in Equation 1. 

 

(1) 

 

where V0 noted as initial reaction velocity, [S0] 

noted as the initial substrate (sucrose) concen-

tration, Vmax represented at the maximum rate 

of reaction, and KM noted as the Michaelis-

Menten constant. This equation was used to 

measure the initial reaction velocity, noted as 

V0, in the kinetic experiments. The initial reac-

tion velocity at a particular initial substrate 

concentration was determined from the slope of 

the curve of the product concentration versus 

time at the beginning of the reaction [21]. Gen-

erally, the KM and Vmax values were determined 

using a Lineweaver-Burk plot [22]. Equation 2 

was obtained by rearranging Equation 1. Plot-

ting of 1/V0 versus 1/[S0] would get a straight 

line. The y-intercept of the Cartesian diagram 

was used to determine the Vmax value and the 

x-intercept of the Cartesian diagram was used 

to determine the KM value [23,24]. 

 

(2) 

 

In the presence of a competitive inhibitor, 

the measured KM will be higher than the KM in 

the absence of the inhibitor [25]. Equation 3 

represented the modification of Michaelis-

Menten equation in the presence of a competi-

tive inhibitor. 

 
(3) 

 

The meaning of the  term was explained in 

Equation 4. 

 

(4) 

 

The value of  can be obtained by a Lineweav-

er-Burk plot of Equation 5 which was obtained 

by rearranging Equation 3. 

 

(5) 

 

The value of the inhibition constant (KI) was 

determined by the plot of  versus inhibitor 

concentration, [I]. For this plot, the x-intercept 

of the Cartesian diagram was used to deter-

mine the KI value. 

 

3. Results and Discussion 

3.1 Effect of Initial Substrate Concentration on 

Enzymatic Hydrolysis of Sucrose using 

Invertase 

Based on Figure 1, the higher the substrate 

concentration, the greater the reducing sugar 

concentration obtained. In the range of sucrose 

concentrations of 10 - 80 g/L, the reducing sug-

ar concentration produced was linear with the 

initial sucrose concentration. It indicates that 

in the range of substrate concentrations used 

in this study there was still no substrate inhi-

bition. There were several studies reporting 

the substrate inhibition of sucrose hydrolysis 

begins to occur at sucrose concentrations of 0.4 

M (137 g/L) [12] and 0.5 M (171 g/L) [26], and 

50 g/L [27]. 

One of the factors influencing the enzymatic 

hydrolysis reaction was substrate concentra-

tion [9,28]. The higher the substrate concentra-

tion, the higher the product concentration be-

cause the enzyme activity increases with in-

creasing substrate concentration [7,28]. En-
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zyme activity will increase with increasing sub-

strate concentration, but enzyme activity will 

decrease at certain substrate concentrations 

due to the inhibition of the substrate [29]. Sub-

strate inhibition occurs at high substrate con-

centrations. The substrate viscosity will be 

higher along with the magnitude of substrate 

concentration. It will slow down the diffusion 

process so that the enzymatic reaction will be 

controlled by the diffusion process (diffusion 

limitation) [30]. Therefore, the substrate will be 

more difficult to be hydrolyzed by acid and en-

zymatic treatment [31]. At high substrate con-

centration, the degree of hydrolysis will de-

crease, possibly due to the high concentration 

of the substrate itself or caused by irreversible 

enzyme inhibitors found in the substrate [32]. 

Corazze et al. [33] states that at high substrate 

concentration, the substrate will compete each 

other to get the active site of the enzyme. 

 

3.2 Effect of Ca2+ Ion on Hydrolysis of Sucrose 

Using Invertase 

Effect of Ca2+ ion on hydrolysis of sucrose 

using invertase was studied and the result was 

shown in Figure 2. Figure 2 shows the hydroly-

sis of sucrose using invertase in presence of dif-

ferent Ca2+ ion concentration (0-1.25%) in 5 

hours. It can be seen, that the reducing sugar 

concentration increase with the increase of hy-

drolysis time over 5 h of hydrolysis. During hy-

drolysis, the longer the hydrolysis time, the 

higher the possibility of collision between the 

enzyme and sucrose (substrate) [34]. Therefore, 

the enzyme-substrate complex will be more 

formed. Hence, reducing sugar produced also 

will be more. 

As can be seen at Figure 2, the reducing 

sugar produced has same pattern and constant 

at 5 h even without Ca2+ (Ca2+ = 0%). It is 

caused by the time dependence of product. The 

product pattern follows the exponential pat-

tern, therefore, it will constant at certain time 

[28]. At low substrate concentration, the prod-

uct obtained is linear with the inhibitor con-

centration [35,36]. From Figure 2, we conclude 

that the reducing sugar concentration de-

creased with the increasing of Ca2+ ion concen-

tration in the hydrolysis system. When the 

Ca2+ ion concentration increased from 0 to 1.25 

%, reducing sugar concentration decreased 

from 9.03 g/L to 5.28 g/L. It indicated that Ca2+ 

ion could inhibit the hydrolysis of sucrose using 

invertase. The presence of Ca2+ ion reduced the 

enzyme activity. Therefore, the degree of hy-

drolysis decreased as well as reducing sugar 

concentrations obtained. The inhibition mecha-

nism of Ca2+ will be provided in the following 

section. 

Several studies have reported that several 

metal ions could inhibit the sucrose hydrolysis 

such as Hg2+, Pb2+, Ag+, Cd2+ as their chloride 

salts [10] and Ag+ as silver nitrate [11]. Those 

metal ions were classified as competitive inhib-

itor [10,11] which can be indicated by the in-

creasing of the apparent KM value. Based on 

the study of Bagal-Kestwal et al. [10], Hg2+ and 

Pb2+ ions were classified as irreversible com-

petitive inhibitor while Ag+ and Cd2+ were clas-

sified as reversible competitive inhibitor. The 

type of Ca2+ inhibition on sucrose hydrolysis 

using invertase will be determined in the fol-

lowing section. 
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function of initial sucrose concentration at t = 5 

h and Ca2+ = 0%. 
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3.3 Type of Ca2+ Inhibition on Sucrose 

Hydrolysis Using Invertase and Kinetic 

Parameters Determination 

The effect of the presence of Ca2+ on sucrose 

hydrolysis has been described in the previous 

section. It has been observed that Ca2+ ion act-

ed as an inhibitor on hydrolysis. Subsequently, 

it’s important to determine the type of inhibi-

tion of Ca2+ on the hydrolysis of sucrose using 

invertase. The inhibition type of inhibitor can 

be determined by the Lineweaver-Burk plot. 

The inhibition type can be classified as compet-

itive, non-competitive and un-competitive inhi-

bition. Competitive inhibition can be noticed by 

the increasing of apparent KM parameter with 

fixed Vmax parameter. Non-competitive inhibi-

tion can be noticed by the decreasing of appar-

ent Vmax parameter with fixed KM parameter 

while un-competitive inhibition can be noticed 

by the decreasing of the apparent KM and Vmax 

parameters. 

It can be seen from Figure 3 and Table 1 

that the KM and Vmax values for native (without 

Ca2+) sucrose hydrolysis using invertase were 

36.181 g/L (105.7 mM) and 21.322 g/L.h (1.973 

mM/min), respectively. The value of KM param-

eter in this study seemed different with the ob-

tained value from several studies. Some stud-

ies calculated the value of KM parameter on su-

crose hydrolysis using invertase, such as: 24 

mM [11], 45.2 mM [27], 227 mM [37], 24.5 mM 

[38], and 99 mM [39]. The different value be-

tween of KM parameter in the present study 

with the previous study may be due to the dif-

ferent operating condition of hydrolysis and the 

different sources of invertase [37]. 

As can be seen from Figure 3 and Table 1, 

plots of 1/V0 versus 1/[S0] and the value of ap-

parent Vmax and KM for different Ca2+ ion con-

centrations showed a positive agreement that 

Ca2+ ion was a competitive inhibitor on sucrose 

hydrolysis using invertase. Several studies 

have shown that several metal ions acted as 

competitive inhibitors on sucrose hydrolysis us-

ing invertase [10,11]. The metal ions competed 

with substrate molecules to bind with the ac-

tive sites of enzyme. For example, Ag+ ions 

make the invertase inactive through the bind-

ing of Ag+ ions to histidine side chains [11].  

Ca2+ 

(%wt) 

Vmax 

(g/L.h) 

KM 

(g/L) 

KM/Vmax 

(h) 
 

0.00 21.322 36.181 1.697 1.000 

0.25 21.413 43.171 2.016 1.188 

0.50 21.231 50.601 2.383 1.405 

0.75 21.186 61.752 2.915 1.718 

1.00 21.505 78.103 3.632 2.140 

1.25 21.368 100.058 4.683 2.760 

Table 1. Apparent kinetic parameters value 
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The mechanism of Ca2+ ion inhibition on in-

vertase through sucrose hydrolysis follows the 

competitive inhibition. The inhibitor competes 

with the substrate for the active site of the en-

zyme [40]. The inhibitor will combine reversi-

bly with the enzyme to form an enzyme-

inhibitor complex which can reduce the amount 

of enzyme for interaction with the substrate, 

therefore, the reaction rate decreases. As 

known before, a competitive inhibitor combines 

reversibly with the enzyme, therefore, the ef-

fect of the inhibitor can be minimized by in-

creasing the substrate concentration [41]. The 

mechanism of competitive inhibition is provid-

ed in Scheme 1. 

The inhibition constant (KI) can be deter-

mined from the plot of  versus Ca2+ ions con-

centration. As can be seen in Figure 4, the inhi-

bition constant for Ca2+ inhibition on sucrose 

hydrolysis using invertase was 0.833 g/g. Equa-

tion 6 represents the general equation for su-

crose hydrolysis using invertase in the presence 

of Ca2+ as a function of sucrose (substrate) con-

centration (in g/L) and Ca2+ ion (inhibitor) con-

centration (in g of Ca2+/g of sucrose). 

 

(6) 

 

 

 

4. Conclusions 

The presence of Ca2+ ions in the system of 

sucrose hydrolysis using invertase decreases 

reducing sugar production. The Ca2+ ions inhib-

it the invertase activity. It can be seen from the 

decrease of reducing sugar production over su-

crose hydrolysis using invertase. The higher 

Ca2+ ions concentration in the solution, the low-

er reducing sugar produced. The inhibition pro-

cess of Ca2+ was classified as competitive inhi-

bition. The kinetic parameters (KM and Vmax) 

were obtained using a Lineweaver-Burk plot. 

The value of KM and Vmax parameters were 

36.181 g/L and 21.322 g/L.h, respectively. The 

inhibition constant also was obtained; its value 

was 0.833 g/g. These parameters were obtained 

from the non-substrate inhibition process be-

cause this study used the low substrate concen-

trations which means the fermentable sugar 

production was low. Hence, there were still 

more challenges to study the simultaneous ef-

fect of substrate and Ca2+ on sucrose hydrolysis 

to produce more fermentable sugar. 
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